b^2+1/16=36

Simple and best practice solution for b^2+1/16=36 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for b^2+1/16=36 equation:



b^2+1/16=36
We move all terms to the left:
b^2+1/16-(36)=0
determiningTheFunctionDomain b^2-36+1/16=0
We multiply all the terms by the denominator
b^2*16+1-36*16=0
We add all the numbers together, and all the variables
b^2*16-575=0
Wy multiply elements
16b^2-575=0
a = 16; b = 0; c = -575;
Δ = b2-4ac
Δ = 02-4·16·(-575)
Δ = 36800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{36800}=\sqrt{1600*23}=\sqrt{1600}*\sqrt{23}=40\sqrt{23}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{23}}{2*16}=\frac{0-40\sqrt{23}}{32} =-\frac{40\sqrt{23}}{32} =-\frac{5\sqrt{23}}{4} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{23}}{2*16}=\frac{0+40\sqrt{23}}{32} =\frac{40\sqrt{23}}{32} =\frac{5\sqrt{23}}{4} $

See similar equations:

| b+7/7=4b+3b+3/3 | | 25+50x=25+70x | | -11=3v=+4 | | -(7m+13)=2(-12-3m) | | 2x^2-25=103 | | 6m+3m(4m+18)=-108 | | 6x^2-36=-12 | | -12=w–10 | | x+49=2x+39 | | 3x-1000=22000 | | 2.1+x=5.2-x | | 4x+8+4x+2x+11=270 | | -8x-14=-7(-2-4x)+4x | | -3(5x-2)4x+5=-11 | | 8x-14=-7(-2-4x)+4x | | 7=2^x | | 50=4v+15 | | 3x-1,000=22,000 | | 3x+5x-7=9x+2-3 | | 9(-1)(n)=9(-3) | | y+9=94 | | C+2(2w)=9 | | (40-x)×(160+8×)=x | | x/14+1=4 | | 2(3-x)=(1-x) | | 3(3x+3)-5+1=26 | | z+14=3z | | 9x-13=10x-3 | | 4n+6=9n-19 | | 5x-13=10x-3 | | −2(−x−4)+3x−2=  −34 | | -19+4x=29 |

Equations solver categories